CIS 7000-1 Homework 1

September 9, 2025

1 Analyzing type systems

Each of the following subsections of this problem describes a variant of STLC, including a (potentially)
modified grammar, small-step operational semantics, and type system. Each of these variants is independent
and you should consider them separately from all others.

For each variant, determine whether type safety holds, where type safety is defined to be the following

property.

Definition 1.1 (Stuck). A term e is stuck if it is not a value and there does not exists any e’ such that
/
e~ e

Theorem 1.1 (Type safety). If § - e € 7 then for all ¢/, such that e ~* ¢/, ¢’ is not stuck.

If the type safety property fails, in a sentence or two, explain in English the source of the error and
intuitively how a well-typed program can get stuck.

Regardless of whether type safety holds, state whether the properties of substitution, preservation and
progress are true for that system, as stated in the lecture notes. For each false property, give a concrete
counter-example and clearly explain why it is a counter-example.

For example, consider the preservation property: If) - e € 7 and e ~ ¢’ then 0 - ¢’ € 7.

To give a counter-example, supply a specific e, a specific ¢’ and a specific 7. Then explain why the
preservation statement is false for the specific terms you have supplied. To do that, you will show a derivation
of 0 e € T to demonstrate e is well-typed and a derivation to show that e ~» e’. Then explain why no
derivation of) - ¢’ € T exists (eg: show a partial derivation and explain why you get stuck finishing it off
with the rules supplied.)

1.1 Null

Suppose we add a new value called null. As in most programming languages, we also add the following
typing rule so that null has any type:

_— NULL
I'btnuller T

1. Is STLC with this modification type safe?
2. Does substitution hold?
3. Does preservation hold?

4. Does progress hold?

1.2 Void

Suppose we add a new type to STLC called Void. But that is it. We don’t add any new terms, typing rules
or small-step reduction rules. This type is called Void because it is empty; there are no closed values with
this type.

1. Is STLC with this modification type safe?
2. Does substitution hold?
3. Does preservation hold?

4. Does progress hold?

1.3 A mystery language

Suppose we add the following new rules to STLC, where X is some fixed map from natural numbers to types.
This map is defined for all numbers, but can return any type.

E(k):Tl—)TQ
Fl‘k’ET1—>T2

T _ARR_PTR

S A A
kv~ (Az.kz)v — PP_NAT

1. Is STLC with this modification type safe?

[\

. Does substitution hold?

w

. Does preservation hold?

4. Does progress hold?

1.4 STLC-

Suppose we remove the typing rule for natural numbers, rule T-LIT, from STLC.
1. Is STLC with this modification type safe?
2. Does substitution hold?
3. Does preservation hold?

4. Does progress hold?

1.5 STLC with lists

Suppose we add lists to STLC by adding two new expression forms, cons e; e and nil. These new forms
are both values.

n=...| List7
n=... | conse; ey | nil
n=... | consej e | nil

o < 3

The typing rules for lists allows us to construct any sort of list out of nil and cons.

I'ke er
I' ey € List 7

I'conse; eg € List T

T _CONS

_— NIL
I' - nil € List 7 -

We also will allow programmers to access the elements of a list through projection. We will reuse the
syntax of function application for list projection: if the first argument is some list [and the second argument
is some number k, then the application looks up the kth element of the list I:

I'e €Listr
I' ey € Nat

I'tereer

T _NTH

S APP ZERO
(consvy v2) 0~ vy — -

S A SUCC
(consvy; v2) (Sk)~wk — FP_sY

1. Is STLC with this modification type safe?

2. Does substitution hold?

w

. Does preservation hold?

N

. Does progress hold?

1.6 Simply-typed function pointers

Suppose we modify STLC to use function pointers instead of anonymous functions. To do so, we assume
the existence of u, a fixed map from natural numbers to abstractions and ¥, a map from natural numbers
to types.

We also remove the rules that type check and step anonymous functions (as they can no longer appear
directly in programs), rule T-ABS and rule S-BETA, and replace them with the following two rules that allow
natural numbers to used as function pointers.

E(k’)ZTl—)TQ
I'Fkern -

T ARR_PTR

w(k) = Az.e

————— S_APP_PTR
kv~ elv/x] - -

We also assume that all functions stored in the table typecheck according to this type system:
Assumption 1.1 (Table typing). For all k, if u(k) = Az.e and 3(k) =7 — 7 then z:71 F e € 7.

1. Is STLC with this modification type safe?

2. Does substitution hold?

w

. Does preservation hold?

e

. Does progress hold?

2 Preservation and Progress proofs

The next part of the homework assignment involves completing the proofs of preservation and progress for
two extensions of STLC. If you would like to use Rocq to mechanize these proofs, you can find initial code
in the ‘homework* directory of the course repository.

2.1 Let binding

Consider adding let expressions to STLC. To do so we extend the grammar, type system, and operational
semantics as follows. We add a new expression form that binds the variable x in the body of the let expression
€.

ex=...|letz =e iney
We add a single new typing rule:
I'Feemn
Iz b e en
- T LET
I'kFletz =ejiney € -
and two new evaluation rules:
S LETV

letz =vine ~ e[v/z]

e~ e}

_ — S LET CONG
letz =einey v letz =ejine - -

1. Extend the preservation proof. This proof is by induction on evaluation steps. That means there will
need to be two new cases for rules S-LETV and S-LET-CONG.

2. Extend the progress proof. This proof is by induction on the typing judgement. That means there will
be one new case for rule T-LET.

Lemma 2.1 (Preservation). If 0 ¢ € 7 and € ~» ¢’ then Q- ¢’ € 7.

Proof. The proof is by induction on the derivation of the reduction. There are cases for each of the rules
that could have been used to conclude e ~~ €.

e In the case of rule S-LETV, ...

e In the case of rule S-LET-CONG, ...

Lemma 2.2 (Progress). If D e € 7 then either e is a value or there exists an e’ such that e ~ ¢’.
Proof. We prove this lemma by induction in the typing derivation. In the rules where e is already a value,

then the proof is trivial. Otherwise, ... O

2.2 Natural number recursion

Proof preservation and progress for the extension of STLC with a successor and primitive recursion operation
as described in the lecture notes.

ex=...|succe | nreceof {0 = e; Sz = ey}

	1 Analyzing type systems
	1.1 Null
	1.2 Void
	1.3 A mystery language
	1.4 STLC–
	1.5 STLC with lists
	1.6 Simply-typed function pointers

	2 Preservation and Progress proofs
	2.1 Let binding
	2.2 Natural number recursion

