
CIS 7000-1 Homework 2

NAME: FILL IN HERE

October 21, 2025

1 Big-steps for let expressions and natural number recursion
We talked in class about the small-step and typing rules for let expressions and the successor operation and
for natural number recursion. You can find the small-step rules in Chapter 3 of the lecture notes, and for
convenience, the typing rules are below:

Γ ⊢ e ∈ τ (typing)

t-let
Γ ⊢ e1 ∈ τ1

Γ, x :τ1 ⊢ e2 ∈ τ2

Γ ⊢ let x = e1 in e2 ∈ τ2

t-succ
Γ ⊢ e ∈ Nat

Γ ⊢ succ e ∈ Nat

t-nrec
Γ ⊢ e ∈ Nat Γ ⊢ e0 ∈ τ
Γ, x :Nat ⊢ e1 ∈ τ → τ

Γ ⊢ nrec e of {0 ⇒ e0; S x ⇒ e1} ∈ τ

Now consider adding rules to the big-step semantics for these operations (this is in addition to the existing
val and app rules).

e ⇒ v (term e big-steps to v)

bs-let
e1 ⇒ v1 e2[v1/x ] ⇒ v2

let x = e1 in e2 ⇒ v2

bs-succ
e ⇒ k

succ e ⇒ S k

bs-nrec-zero
e ⇒ 0 e0 ⇒ v

nrec e of {0 ⇒ e0; S x ⇒ e1} ⇒ v

bs-nrec-succ
e ⇒ S k e1[k/x ] ⇒ λy .e ′

nrec k of {0 ⇒ e0; S x ⇒ e1} ⇒ v1
e ′[v1/y ] ⇒ v

nrec e of {0 ⇒ e0; S x ⇒ e1} ⇒ v

1. Prove that the small-step and big-step languages produce the same values, extending the proof from
Chapter 3.

Theorem 1.1 (Equivalence of semantics). For closed expressions e, we have e ⇝∗ v if and only if
e ⇒ v .

2. Extend the semantic soundness proof from Chapter 4. This means that you need to prove semantic
typing rules equivalent to rules t-let, t-succ, and t-nrec.

Lemma 1.1 (Semantic let). If Γ ⊨ e1 : τ1 and Γ, x :τ1 ⊨ e2 : τ2 then Γ ⊨ let x = e1 in e2 : τ2.

Lemma 1.2 (Semantic succ). If Γ ⊨ e : Nat then Γ ⊨ succ e : Nat

Lemma 1.3 (Semantic nrec). If Γ ⊨ e : Nat and Γ ⊨ e0 : τ and Γ, x : Nat ⊨ e1 : τ → τ , then
Γ ⊨ nrec e of {0 ⇒ e0; S x ⇒ e1} : τ .

1



2 Big-steps with errors
In class, we observed that we cannot use a direct induction on the typing judgment to show type safety for
the big-step semantics. Instead, we switched to a logical relations based argument. However, this proof is
rather strong as it shows that all expressions terminate.

The issue is that the big-step semantics cannot distinguish between terms that fail to produce a value
due to some type error and those that fail to produce a value because they diverge.

In this problem, let’s revise the big step semantics so that it can talk about type errors. In this version,
the result of evaluation is either some value v , or a special error result, written Stuck.

result r ::= Stuck | v

Our rules for the big step semantics produce this result when we try to apply a non-function (rule ts-
app-stuck), or when one of the subterms of an application produces an error (rules ts-app1 and ts-app2).
(You do not need to consider let, succ or nrec terms in this problem.)

Definition 2.1 (Big-step).

e ⇒ r (term e bigsteps to v or gets stuck)

ts-val

v ⇒ v

ts-app
e1 ⇒ λx .e ′1

e2 ⇒ v1 e ′1[v1/x ] ⇒ r

e1 e2 ⇒ r

ts-app-stuck
e1 ⇒ k

e1 e2 ⇒ Stuck

ts-app1
e1 ⇒ Stuck

e1 e2 ⇒ Stuck

ts-app2
e1 ⇒ v e2 ⇒ Stuck

e1 e2 ⇒ Stuck

1. Prove the following lemma:

Lemma 2.1 (Type Safety (Not stuck)). If ⊢ e ∈ τ and e ⇒ r then r is not Stuck.

2. How does this statement of the lemma compare to the preservation and progress lemmas described in
Chapter 1?

For example, suppose that we somehow made a design error in the big-step semantics or the typing
rules. For example, say we forgot to add a rule, or that we added an extra, nonsensical rule. (You
might consider variants of the unsafe type systems from homework 1.)

What sort of errors would this safety lemma catch? What would still be considered type safe?

Furthermore, we discussed that there were some languages that we wanted to call type safe, but did
not satisfy the small-step properties of preservation and progress. Would these languages satisfy this
lemma?

2



3 Big-steps with timeouts
Recall our step-counting definition of type-safety for the small-step semantics:

Definition 3.1 ((Small-step) Safe for k). An expression evaluates safely for k steps if it either there is some
e ′, such that e ⇝k e ′, or there is some number of steps j strictly less than k where the term terminates with
a value (i.e. there is some v and j < k such that e ⇝j v).

We can use this idea to prove a form of type safety theorm for a language with a big-step semantics.
The first step is to revise our semantics to incorporate a count, using the notation e ⇒i r . Here, i is the
maximum height of the derivation; every rule must use a smaller i for its premises. Furthermore, it may
or may not be possible to fully evaluate an expression within a bounded height derivation. So we modify
the second argument of this judgement to be a result: either a value or Timeout, indicating an incomplete
evaluation.

result r ::= Timeout | v

Definition 3.2 ((Big-step) Safe for k).

e ⇒i r (term e times out or steps to v in derivation of height less than i)

tk-timeout

e ⇒0 Timeout

tk-val

v ⇒S i v

tk-app
e1 ⇒i λx .e

′
1

e2 ⇒i v1 e ′1[v1/x ] ⇒i r

e1 e2 ⇒S i r

tk-app1
e1 ⇒i Timeout

e1 e2 ⇒S i Timeout

tk-app2
e1 ⇒i λx .e

′
1

e2 ⇒i Timeout

e1 e2 ⇒S i Timeout

With this definition, we can use this definition of type safety.

Theorem 3.1 (Type Safety (step-counting)). If ⊢ e ∈ τ then for all natural numbers k, e ⇒k r , i.e. e is
Safe for k.

1. Prove this theorem by induction on k.

2. Analyze this statement of type safety just as you did for the previous problem. Is it possible for a
language to satisfy the step-counting theorem, but not the not-stuck theorem? Or vice versa?

3


	1 Big-steps for let expressions and natural number recursion
	2 Big-steps with errors
	3 Big-steps with timeouts

