CIS 7000-1 Homework 3

NAME: FILL IN HERE
November 17, 2025

1 Recursive Nats

We saw in OCaml that we can define an “infinite” natural number using a recursive value definition.

type nat = zero | succ of nat

let rec omega : nat = succ omega

However, recall that the premise of our introduction rule for recursive values limits the types of values
that may be used in recursive definitions.
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In the type system in the lecture notes (and that we discussed in class), there were two types of values
that could be used.

FUN-OK PROD-OK
(11 — T2) ok (11 % 72) ok
Suppose we add the ability to define recursive nats to REC.

NAT-OK

Nat ok

With this rule, we can define w = recz.Sz in REC. (Note: I've updated the REC language slightly
compared to the version we discussed in class. Please take a look at the lecture notes to see how this
expression type checks and evaluates.)

1. What small step rule(s) do we need to add to REC so that the progress lemma holds?

2. How do the following expressions evaluate using the small step semantics? Write the sequence of steps
that they take, stopping when you get to a value or loop back to a prior term. Use your new step
rule(s) from the previous part.

e (A\z.z) w~

e casewof {0=0; Sy = y} ~

e (recz.\y.caseyof {0=10; Sy =Sy})w~~
e (recz.\y.caseyof {0=0; Sy =2z y}) w~



2 Small-step CBV: derived forms

Fine-grained CBV requires that subterms be values in many cases. We showed in class that we could derive
the usual forms using let terms.

2.1 Swuccessor

In this language, the syntax of values include 0 and the successor of some value, written S v.
However, in STLC, succ e was an expression and could be applied to any term, not just values. Even
though this term does not appear in this language, we can define it using let expressions.

Definition 2.1 (Extended Successor). Define succe as letz = einret (Sz).
Now, prove that this definition acts like a successor term, by showing these properties of the encoding.
1. If ' - e € Nat then I' F succ e € Nat.
2. succ (ret v) ~ ret (Sv).

3. If e ~ €’ then succe ~* succe’.

2.2 Derived products

Now recall the definition of the “eager let” form:

Definition 2.2 (Eager let). Define let 2 < e in ey as ex[v/z] when e is retv and letz = e ine,
otherwise.

In fine-grained CBV, products are values and must have values as their component. Define an expression
form for products using eager let.

Definition 2.3 (Extended prod). Define (e1,e2) as let 13 < ¢ inlet 2z < e in ret (21, 12).
Now, prove that this definition acts like a product term, by showing these properties of the encoding.
1. fTFe € and T F ey € 75 then T (e, €3) € 71 * To.
2. If e; ~» ef then (er, e2) ~* (€1, €2).
3. If ey ~> €} then (ret vy, e3) ~* (ret vy, €}).

What if we used regular let in the definition of (eg, e2). Are the two properties still true for this encoding?
If any fail, provide a counterexample.
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3 Small-step semantic soundness proof

If we consider the fine-grained call-by-value language without recursive values or recursive types, then we
can prove that all expressions in this language terminate with a value. Recall the definition of our logical
relation from class.

Definition 3.1 (Logical Relation).

Cl7] = {e|e~*retvandv e V[r]}

V[Nat] = N

V[Void] = {}

Vi = 1] = {v]| Vv, w € V[n] implies v va € C[12] }
Vlnxm] = {v]|prjvel[n] and prjyv € C[r] }
Vlin+m] = {injv|vu €V[n] }U{injyv | » € V[r] }

As well as the definitions for semantic typing for values and expressions:
1. Define o € G[I'] when Vx € domT',0 2z € V[I z].

2. Define T' F e : 7 when forall o € G[I'], e[o] € C[7].

3. Define T' F v : 7 when forall o € G[I'], v[o] € V[7].

Complete the small-step semantic soundness proof for fine-grained CBV by proving semantic soundness
lemmas for products and (first) projections.

Lemma 3.1 (Semantic prod rule). If T'F vy : 71 and T'F vy : 7o then T'E (v1, v1) : 71 % To.

Lemma 3.2 (semantic projection). If I' E vy : 71 % 72 then I' F prj,v; : 71.
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4 Step-indexed logical relations
Now remember the step-indexed logical relation.
Definition 4.1 (Step-indexed logical relation).

Cleet]r = eirreducible implies that there exists v such that
e=retvand Vv e 1]
and e ~ €' implies >, C[e' € 7]

V[ v € Void | = never

V[v € Nat ] = veN

V[ z.e €1 = 2] = VYou,V[u € 1] = C[e[na/z] € 12]
Vlreczvem = n]y = b V[vrecz.v/z] €m — 7]
V[[(Ul,UQ)GTl*TQ]]k = Dy V[[’U1€7'1]]and D> V[[UgETQ]]
V[reczwem xn]y = bg V]v[recz.v/z] €1 *75]
V[inj,v1 € 11 + 72 |k = > V[ €m]

V[[an2U2€T]_ +72]]k = Dy V[[’UQETQ]]

V[fold v € pa.7 ] = bg V[v € tpa.t/a]]

and its notion of semantic typing:

1. Define o € I'); when for all x € domT', we have V[oz € T'z .
2. DefineT'F k e : 7 when [o € T] = C[ e[o] € T].
3. Define I' ki, v € 7 when [o € I'] = V[ v[o] € 7].
Finish the step-indexed logical relations proof for products (including recursive products).
Lemma 4.1 (ST prod). T F; v € 1y and T Fg v € o then T'E & (v, v1) @ 71 % 2.
Lemma 4.2 (ST rec_prod). UT,z:7y x o F kv:7 x5 then T F krecz.v: 7 *7o.
Lemma 4.3 (ST prjl). U T F kv, : 7y 72 then T' E k prjv; : 7y
If you would like an extra challenge, you can also prove the semantic soundness lemma for let expressions.

Lemma 4.4 (ST let). T EFe :mandTyz:m Eey: o then TEletx = ejines : 7.
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