
CIS 7000-1 Homework 4

NAME: FILL IN HERE

December 1, 2025

1 Syntax-directed type-and-effect systems
In class, we defined a type-and-effect system that tracks potential nontermination. Actually, we defined two
different type systems: an initial version containing a sub-effecting rule, and then a syntax-directed version,
which we proved equivalent to the original version.

For this problem, finish the definition of the type system shown below. In particular, you must update
the typing rules vo-abs, to-app, to-ifz, to-prj1, to-prj2, and to-case defined in hw4.ott, by adding
premises and (potentially) modifying the conclusion of the rule. Your type system should consider the effect
as an “output” of the judgment and calculate the minimal effect that follows from the rules according to the
effect ordering. In some rules, you may need to use the operator ε1 ⊔ ε2, that calculates the least upper
bound of two effects. This operator returns ⊥ if both inputs are ⊥, and DIV otherwise.

Γ ⊢OUT e
ε
∈ τ (In context Γ, e has type τ and effect ε)

to-ret
Γ ⊢ v ∈ τ

Γ ⊢OUT ret v
⊥
∈ τ

to-let

Γ ⊢OUT e1
ε1∈ τ1

Γ, x :τ1 ⊢OUT e2
ε2∈ τ

Γ ⊢OUT let x = e1 in e2
ε1⊕ε2∈ τ

to-app
FILL IN HERE

Γ ⊢OUT v1 v2
ε
∈ τ2

to-ifz
FILL IN HERE

Γ ⊢OUT case v of {0 ⇒ e1; S x ⇒ e2}
ε
∈ τ

to-prj1
FILL IN HERE

Γ ⊢OUT prj1v
ε
∈ τ1

to-prj2
FILL IN HERE

Γ ⊢OUT prj1v
ε
∈ τ1

to-case
FILL IN HERE

Γ ⊢OUT case v of {inj1x1 ⇒ e1; inj2x2 ⇒ e2}
ε
∈ τ

to-unfold
Γ ⊢ v ∈ µα.τ

Γ ⊢OUT unfold v
DIV
∈ τ [µα.τ/α]

Γ ⊢ v ∈ τ (In context Γ, v has type τ)

vo-var
x : τ ∈ Γ

Γ ⊢ x ∈ τ

vo-zero

Γ ⊢ 0 ∈ Nat

vo-succ
Γ ⊢ v ∈ Nat

Γ ⊢ S v ∈ Nat

vo-pair
Γ ⊢ v1 ∈ τ1 Γ ⊢ v2 ∈ τ2

Γ ⊢ (v1, v2) ∈ τ1
ε
× τ2

vo-inj1
Γ ⊢ v1 ∈ τ1

Γ ⊢ inj1v1 ∈ τ1 + τ2

vo-inj2
Γ ⊢ v2 ∈ τ2

Γ ⊢ inj2v2 ∈ τ1 + τ2

vo-abs
FILL IN HERE

Γ ⊢ λx .e ∈ τ1
ε→ τ2

vo-rec
τ ok Γ, x :τ ⊢ v ∈ τ

Γ ⊢ rec x .v ∈ τ

vo-fold
Γ ⊢ v ∈ τ [µα.τ/α]

Γ ⊢ fold v ∈ µα.τ

Your syntax-directed system should satisfy the following two lemmas, connecting it to the original type

1

https://github.com/sweirich/pl-semantics-and-types/blob/main/rocq/div/div.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/rocq/div/sd.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/rocq/../homework/ott/hw4.ott


system. For this problem, you do not need to typeset these proofs, you only need to present the rules. You
may wish to look at the Rocq definitions and proofs in the module to see how to use that tool to experiment
with your rules.

Lemma 1.1 (Syntax-directed system implies original system). Γ ⊢OUT e
ε
∈ τ implies Γ ⊢ e

ε
∈ τ .

Lemma 1.2 (Original system implies new syntax directed system). If Γ ⊢ e
ε
∈ τ then there exists some ε1

such that ε1 <: ε and Γ ⊢OUT e
ε1∈ τ .

2

https://github.com/sweirich/pl-semantics-and-types/blob/main/rocq/div/sd.v


2 Running time as an effect
Design a type-and-effect system for running time. The time folder contains Rocq starter code for your use.

Your type-and-effect judgment, written Γ ⊢ e
ε
∈ τ , should assign every term some effect ε, where effect

annotations should be either some natural number k , or DIV to indicate potential nontermination:

ε := k | DIV

1. Effect algebra: what are the definitions of ⊥, ε1 <: ε2 and ε1 ⊕ ε2? Make sure that these defini-
tions satisfy the properties of a pre-ordered monoid. (You don’t need to typeset the proofs of these
properties.)

⊥ =

ε1 ⊕ ε2 =

ε1 <: ε2 =

2. Type system: The typing rules of this language are the same as that of the type-and-effect language
found in Chapter 7 of the lecture notes, except that effect tracking must be modified to count execution
steps.

Write the modified versions of rules tie-ret, tie-let, tie-app, tie-prj1, tie-prj2, tie-ifz, and
tie-case.

3. Example: Your type system should not just use DIV as the effect for everything. Show the typing
derivation for a term that type checks with effect 3 that does not use the effect subsumption rule (i.e.
a term that takes exactly three steps to reduce to a value).

4. Effect soundness: Prove the following theorem. In your answer, you do not need to typeset the entire
proof. Merely, identify what induction principles you use and explicitly state any helper lemmas that
your proof relies on. (You do not need to define a logical relation for this problem.)

Lemma 2.1 (Finite Step Soundness). If ⊢ e
k
∈ τ then there exists some j ≤ k, and value v, such that

e ⇝j ret v .

3

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw4/time/
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw4/time/time.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw4/time/eff.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/rocq/div/div.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw4/time/time.v


3 Soundness of monadic type system

We described a monadic type system for tracking nontermination, called MON. Prove that terms with
nonboxed types always terminate using a logical relation. (This logical relation does not need to be
step-indexed.) If you are working in Rocq, you can use the definitions in the modal/modal.v module.

Lemma 3.1 (Monadic soundness). If ⊢ e ∈ τ and τ is not a box type, then there exists some v such
that e ⇝∗ ret v .

For this problem, you need to typeset the definition of the logical relation and state and prove the
semantic soundness lemmas for rules t-let-nb, t-bind, and t-pure.

4

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw4/modal/modal.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw4/modal/modal.v

	1 Syntax-directed type-and-effect systems
	2 Running time as an effect
	3 Soundness of monadic type system

