CIS 7000-1 Homework 5

NAME: FILL IN HERE
November 17, 2025

1 Stack-based operational semantics

In this problem you will design a stack based operational semantics for STLC with natural numbers and let
expressions. For reference, the file homework/rocq/hw5/stlc/stack.v contains definitions to help you get
started.

1. Define the syntax of stack frames and rules for a small-step stack-based semantics (i.e. the judgement
(s, e) — (s’ €’)). We have given you the frame and two rules associated with let expressions to get
started.

Note that because STLC is not a fine grained language, you will need to define stack frames for
application, succ, and nrec terms. Each rule of your small-step stack-based semantics should be an
axiom, i.e., should not include any premises in order for the rule to apply.

Definition 1.1 (Frame Grammar).
frame :=1letx = ine | ADD new frames here. ..

Definition 1.2 (Stack-based small-step semantics).

‘ (s,€) = (s',¢€) (Add rules here)

SSM-LETV SSM-PUSH

(letzx = iney:s,v)— (s, ev/z]) (s,Jetx = e1inex) — (letz = inep: s, ep)

2. As part of making sure that your definitions produce the same semantics as our original semantics for
STLC, you should prove several lemmas. One lemma, shown below, connects the big-step semantics
to the stack based semantics.

Lemma 1.1 (Bigstep completeness). e = v implies (s, e) —* (s, v) for any s.

This proof proceeds by induction on the derivation of e = v. Typeset the case when the last rule used
was rule BS-APP.

BS-APP
er = \z.¢€]
!
e = U erv/z] = v

€] €2 = U2

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/stlc/stack.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/stlc/stack.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/stlc/stack.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/stlc/stack.v

3. Complete the definition of the “unravel function”, written s{e} and prove the following lemma con-
necting the original small-step semantics with your new evaluation frames.

Definition 1.3 (Unravel). The unravel operation, written s{e}, takes a stack s and expression e and
produces a combined expression.

[{e} = e
(letz = iney:s){e} = s{letz = einey}
FILL IN HERE

Lemma 1.2 (Stack congruence). If e ~» ¢’ then s{e} ~ s{e'}.

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/stlc/stack.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/stlc/stack.v

2 Exceptions, Control Operators and Effect Handling

The next problems concern extension of the stack-based version of REC with various control operators.
We call this base language CONTROL. For reference, the file homework/rocq/hw5/control/control.v
contains definitions to help you get started.

. In homework 1, we saw that the extension of STLC with lists and indexing was not type sound. In this
problem, we will use exception throwing to safely extend the CONTROL language with list indexing.

T-NTH
I'ke €Listr

Tk e, € Nat S-APP-ZERO S-APP-SUCC

I'Feeer (cons vy v2) 0 ~ v; (cons vy v2) (Sk) ~ v k

The problem is that indexing from an empty list is stuck. We can recover soundness by adding a
new rule that raises an exception in this case. (This rule raises exception “0”, which we can call
“NoSuchElementException”.)

S-APP-NIL
nil v ~~ raise0

Prove the preservation preservation lemma for the CONTROL language with this extension. In your
proof, you need only show the case for the rule T-NTH.

Lemma 2.1 (Primitive Preservation). If - e € 7 and e — ¢’. The ¢’ € 7.

Proof. By induction on e € 7.

e If rule T-NTH was the last rule used, then

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/control/control.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/control/control.v

5. The term exit v immediately terminates the execution of a program returning the value v, discarding
any computation that is in progress.

For example, we have:
(I, (Azdet z = exitzinl + z) 3) =" ([],ret 3)

What are the typing rules and operational semantics for exit v? You can add these rules to the Rocq
development to make sure that they do not violate type safety.

6. Effect handlers in OCaml also include a discontinue term. See the OCaml Manual (https://ocaml.
org/manual/5.3/effects.html) for more information.

This term takes two values as arguments: a continuation and an exception value (i.e., a nat in our
simple language). On execution, it jumps to that saved stack and raises the given exception.

SSM-DISCONTINUE

(s,discontinue (cont s) v) — (s’ raise v)

Design a typing rule for this term and prove the corresponding cases of the preservation and progress
lemmas.

Lemma 2.2 (Machine Preservation). If F mok and m — m’. The F m’ ok.

Proof. By inversion on the typing and step judgements.
e If the machine steps by rule SSM-DISCONTINUE, then
O

Lemma 2.3 (Machine Progress). If = m ok and there is no m’ such that m — m/, m is a final machine
state.

Proof. By induction on the typing judgement.

e If the last rule used was rule T-DISCONTINUE, then

https://ocaml.org/manual/5.3/effects.html
https://ocaml.org/manual/5.3/effects.html
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/control/control.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/control/control.v

3 A type-and-effect system for exception handling

7. The file homework /rocq/hwb /exn/exn.v contains the definition of a type-and-effect system for excep-
tion handling. This language is like the CONTROL language, but for simplicity, only includes the
exception handling extension and does not include recursive values or types.

To make it easier to statically track exception, there are two small modifications to raise and try.
First, raise terms must be called with concrete exception values—i.e. we need to know the identity
of the exception that has been raised. Secondly, when installing an exception handler with try, the
exception handler applies to only a single exception (indicated by the natural number k) and does not
catch any other exception value. (In this language there is no way to catch all exceptions.) We've
changed the syntax of the try term to make this explicit.

term e = trye withexnk = e, | raise (exnk)
frame f = try withexnk = e

The stack-based small step semantics is similar to before. When an exception is raised, the find _exn
operation searches the stack for a handler that exactly matches the exception that was raised. Frames
for other exceptions are skipped.

/!

m—m (Stack-based small-step rules)

SSM-TRY-EFF

(s, try ey withexnk = e3) — (try withexnk = ez :s,¢€1)

SSM-DISCARD-EFF

(try withexnk = ey : s,ret v) — (s,retv)

SSM-RAISE-EFF

(frame : s,raise (exnk)) — find _exn (frame : s) k

find exn (try withexnk = e :5)k = (s, e)
find exn (frame : s) k nd exnsk
find _exn|[|v = ([], raise v)

The type-and-effect rules for this extension track potentially raised exceptions. The core rules are
similar to the ones that we used to track nontermination.

(Value v has type T)

TV-ABS-EFF

TV-VAR TV-SUCC

z:7 €T Tzimbeen TV-ZERO ' v e Nat

'Fxer I'FAzeem = I'0e Nat I'Sv e Nat

TV-PAIR TV-INJ1 TV-INJ2

FI—’U1€T1 F}—UQGTQ FI—’U1€T1 F}—UQGTQ
F"(’Ul,’vg)e’rl*’rg P}_injlvleTl-l-Tg F'_inj2v2€7-1+7—2

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/exn/exn.v

(Term e has type T and effect)

TEE-LET

. TEE-APP
TEE-RET € € 7—612 Fhuern 5
''Cver Ie:mbecer I'Fuwemn

L . c1dea €
TF'kretver I'bletx = e;jine; € 7 I'wv v €my
TEE-IFZ
€
I'-v € Nat r :61 S TEE-PRJ1-BOT TEE-PRJ2-BOT
F7aj2:Nat|—e2€7' F}_'UETl*TQ Fl_'l}eTl*TQ
€ 1 1
I'Fcasevof {0 = ¢; Sz = e} €7 Tk prjjven 't prj,v €
TEE-CASE
I'Fvern+mn
13
Toy:mbeer TEE-SUB-EFF
€ €
Tz beeT TFeécr €1 <: €9
I 1>
'+ casevof {injz1 = e1;injyz0 = e} € 7 Thecr

What is different this time is that effects are modeled by sets of natural numbers, where each natural
number in the set indicates the identity of an exception that could be thrown.

That means that we interpret the | effect as the empty set — pure expressions cannot throw any
effects. We define effect subsumption €; <: €2 using the subset relation. If we know that a program
could raise exception 0, it is sound to say that it could raise either exception 0 or exception 1.

The typing rules for raise and try are specific for exception tracking. The effect of raise (exn k), is
{k}, a singleton set that indicates that exn k could be raised by the program.

TEE-RAISE-EFF

. {k}
I'F raise (exnk) € 7

To type check exception handlers, we need a new operation on effects, written €1 © 5. Exception
handlers mask effects, so we need a way to remove specific exceptions from the effect of a try block.
The effect of a try block includes both the effects of the body of the try (with the caught exception
removed) plus the effects of the handler.

TEE-TRY-EFF
ed{k} e
I'egr € 7 I'Feer

T'Ftry eg withexnk = ey €T

Your job for this problem is to:
(a) Define the typing judgements for frames, stacks, and machines. (You can start with the analogous
definitions from the CONTROL language and effect tracking.)
(b) State and prove the preservation lemma for the find exn sk term.
(c¢) (Optional) Prove the preservation lemma.

(d) (Optional) Prove the progress lemma.

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/exn/exn.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw5/exn/exn.v

The type soundness lemma for this language gives us effect soundness. If a machine has effect L is
in a terminal state, then it cannot be an uncaught exception. In other words, we know that all raise
exceptions will be caught by the program.

	1 Stack-based operational semantics
	2 Exceptions, Control Operators and Effect Handling
	3 A type-and-effect system for exception handling

