CIS 7000-1 Homework 6

NAME: FILL IN HERE
December 1, 2025

1 Monads are Monoids in the Category of Endofunctors

(The starter code for this problem is in the file: rocq/control/monads.v.)

Recall the definition of difference lists or dlists from class. The key idea of this data structure is that it
abstracts over “what should be in the rest of the list”. This allows an efficient implementation of list append
as function composition.

Definition dlist (A : Type) := list A — list A.

Definition dnil {A} : dlist A := fun k = k.

Definition dcons {A} : A — dlist A — dlist A := funxdl = funk = x :: d1 k.
Definition dapp {A} : dlist A — dlist A — dlist A := fun f g = fun x = (f (g x)).
Definition list_of_dlist {A} : dlist A — list A := fun dl =41 |].

1. Show that difference lists are monoids. In other words, prove the following three properties.

Lemma dlist_left_id {A} {dl : dlist A} :
dapp dnil d1 = d1.
Lemma dlist_right_id {A} {dl : dlist A} :
dapp dl dnil — d1.
Lemma dlist_assoc {A}{d11 d12 d13 : dlist A} :
dapp (dapp d11 d12) d13 = dapp d11 (dapp d12 d13).

2. Consider this reimplementation of the list reverse function. If you unfold the definitions, you will see
that it is the same as the implementation of list reversal using an accumulator.

Fixpoint reverse_dlist {A} (xs: list A) : dlist A :=
match xs with

| nil = dnil
| v:: ys = dapp (reverse_dlist ys) (dcons y dnil)
end.

Prove that this implementation of reverse is the same as the usual definition (which is as above but
uses lists instead of dlists).

Lemma reverse_dlist_spec {A} (xs : list A) : List.rev xs = list_of_dlist (reverse_dlist xs).

3. The continuation monad is a way of representing computations that abstract over “what to do next”.
This allows a convenient way of defining code in continuation passing style.

Here is how we can define the continuation monad in Rocq.

Definition M (K A : Type) := (A — K) — K.

Definitionret {AK}:A -+ MKA:=funxk =k x.

Definition bind {K AB} :MKA — (A —>MKB) - MKB :—
funml m2 = fun (k : B — K) = ml (fun a = m2 a k).

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/control/monads.v

We'll also introduce standard notation for the bind operation.

Infix "»=" := bind (at level 70).
Notation "x <-ml ;; m2" := (bind ml (fun x = m2)) (at level 70).

Prove that M K is a monad by showing the three monad laws.

Lemma M_left_id {K A B}{x:A}{h: A - MK B} : ret x »>h =hx.

Lemma M_right_id {K A}{x:A}{m: MK A} : m »=ret = m.

Lemma M_assoc {KABC}{m: MK A}{g: A > MKB}{h:B—>MKC} :
((m »=g) »=h) = (m »=(fun (x: A) = g x »=h)).

. We can rewrite the reverse function using the continuation monad as follows:

Fixpoint reverse_cps {K A} (xs : list A) : MK (list A) :=
match xs with
| nil = ret nil
| vt ys = zs < reverse_cps ys j; ret (zs ++[y])
end.

Prove that this version of reverse is equivalent to the usual definition.

Lemma reverse_cps_spec {A} (xs: list A) : rev xs = reverse_cps xs (fun x = x).

2 Continuation-Passing Style Translation

In this problem you will work with the CPS translation that we discussed in class. The core language is the
stack based language with letcc, throw, cont, and exit.

For reference, the files homework/rocq/hw6/control/letcc.v and homework/rocq/hw6/control/cps.v
contain definitions to help you get started.

Recall the theorem that states that the CPS translation is type preserving.

Lemma 2.1 (CPS translation is type preserving). Suppose I' ~ A.
1. If T v €7 then A V(v) € T(7)
2. IfT'Feerand A+ w e C(r) then A+ E(e),, € Void
3. If-sem ~ 7 then - S(s) € C(7)

This lemma depends on the definitions of the type, term, value and stack translations, as well as the
relation I' ~ A, which are available in the lecture notes.

1. Prove this lemma. You don’t need to type set all of the cases here: just pick a small number that you
believe are representative.

2. (Optional) This translation is not the only possible CPS translation. Pick a different one, define how
it works and prove the analogous lemma that states that the translation preserves types. You don’t
need to include the full language that we include in the lecture notes. At a minimum, your translation
should work for the core lambda calculus: variables, functions, applications, ret and let. (Do not try
to prove a simulation relation for the translation that you have picked.)

For example, the translation that Pottier uses in his paper produces more efficient output by generaliz-
ing the continuation argument to the term translation. (His version is based on a translation by Danvy
and Filinski from 1992). Or, you could look up Plotkin’s original call-by-value translation (in his 1975
paper), or one created by Sabry and Wadler in 1997. For a more logical point of view, Sgrensen and
Urzyczyn in “Lecture Notes on the Curry Howard Isomorphism”; present a different translation based
on the double negation translation studied since the 1930s.

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/control/letcc.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/control/cps.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/control/cps.v

3 Untyped Program Equivalence

Add products and sums to the proofs about program equivalence for the untyped lambda calculus. This
means extending all proofs with these syntactic forms.

Definition 3.1 (Syntax).
values v = ...| (v, 1) | inj;v | injyv
terms e = ...|prjv | prjyv | casevof {inj;z = e1;inj,x = e}
These new features means extending the definition of program contexts accordingly.

Definition 3.2 (Program Context).

C = #|Cwl|vnlC|letz=Ci,e|letz=c¢e i, C
| retC |casevof{0= C;Sy=e}|casevof{0=ey;Sy= C}

C == #|succC |funzy.C
For your homework, typeset your extensions of the following definitions and proofs.
1. The definition of what it means for a relation to be compatible.

Definition 3.3 (Compatible). A pair of scoped relations Re and Ry are compatible when the following
properties hold:
(a) XFzRyz
(b) X F unit Ry unit
)

¢) X F zeroRy zero

(
(d) X F v1 Ry vg implies X F succ v; Ry succ vy

(e) X,z t e Re ez implies X - Az.e; Ry Az.en

(f) X F v Ry vo implies X F ret v; Reret vy

(¢) XFeyReex and X,z F ef Re e implies X Fletz = ejine] Reletz = eyine)
(h) X F vy Ry v and X F v] Ry v implies X F v; v] Re va v5.

(i) X F vyRyv and X F ey Reey and X, 2 F €] Re €5 implies X + casev; of {0 = e; Sz =
/ / /. /
e]} Recasevy of {0 = ef; Sz = e}}

2. The definition of the Logical pre-order.

Definition 3.4 (Step-indexed Logical Relation).

Cler < e = Vsi,8,8[s1 < so] = (s1,e1) T (52, €2)

Sls1 < sk = VYo, V[<] = (s1,ret v1) T (5o, ret vy)

V[unit < unit]y = always

V[zero < zero]y = always

V[(succvy) < (succwu)]xy = b V[<]

V[(funz y.e) < wun]y = VYo', V[v <V] = Cle[(funzy.e)/y,vi/z] < (v2 V)]

3. The prj; case of the lemma that shows that the logical relation is compatible.

4. The product and prj; cases of the lemma that shows that contextual equivalence is compatible.

https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/untyped/syntax.sig
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/equiv/contextual.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/untyped/equiv.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/untyped/ctx.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/untyped/equiv.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/untyped/equiv.v
https://github.com/sweirich/pl-semantics-and-types/blob/main/homework/rocq/hw6/contextual.v

	1 Monads are Monoids in the Category of Endofunctors
	2 Continuation-Passing Style Translation
	3 Untyped Program Equivalence

