Programming Languages: Semantics and

Types

Stephanie Weirich

September 9, 2025

ii

Contents

1 Type Safety for STLC

1.1 Syntax

1.2 Typesystem

1.3 Operational Semantics

14 Preservation and Progress

1.5 Whatistypesafety?.

1.6 Furtherreading
2 Natural number recursion

21 FurtherReading
3 Big-step semantics

3.1 Big-stepsemantics

3.2 Big-step semantics and type safety?

iii

iv

CONTENTS

1

Type Safety for a Simply-Typed
Lambda Calculus

This section gives a precise definition of the syntax of a simply-typed lambda cal-
culus, its type system and small-step operational semantics. For conciseness, we
often refer to this language as STLC.

If you are new to programming language theory, this section also introduces
some of the mathematical concepts that we will be using throughout the semester,
such as inductively defined grammars, recursive definitions, and proofs by struc-
tural induction.

STLC is actually a family of simple languages, with some freedom in the sorts
of features that are included. There must always be some sort of “primitive” type
such as booleans, numbers, or even a unit type. And STLC always includes first-
class functions, i.e. A-terms, making it a simplified version of typed functional
languages such as ML or Haskell. However, in other contexts you may see it
extended with various other features, such as records, products, disjoint unions,
variant types, etc.

1.1 Syntax

The syntax of the simply-typed lambda calculus is defined by a set of terms and
their associated set of types. By convention, we will use the metavariable e to refer
to some arbitrary term and 7 to refer to some arbitrary type. If you are familiar
with algebraic datatypes, or inductive datatypes, you can think of the following
definitions along those lines.

Definition 1.1.1 (Types). The set of types is inductively defined by the following
rules:

1. A base type, Nat, is a type.

2. If 7y and m are types, then 7, — 7 is a type.

2 CHAPTER 1. TYPE SAFETY FOR STLC

The type 7 — 72 represents the type of functions that take an argument of type 7
and return a value of type 7.

Definition 1.1.2 (Terms). The set of terms is inductively defined by the following
rules:

1. A natural number £ is a term.
2. A variable z is a term.

3. If eis a term and z is a variable, then Az.e is a term (called a lambda abstrac-
tion). The variable x is the parameter and e is the body is the body of the
abstraction.

4. If e; and e, are terms, then e; e is a term (called a function application).

The definition of terms refers to two other sets: natural numbers and variables.
The set of natural numbers, N, are an infinite set of numbers 0, 1, ...; we will use
i, j and k to refer to arbitrary natural numbers. We treat variables more abstractly.
We assume that there is some infinite set of variable names, called V, and that given
any finite set of variables, we can always find some variable that is not in contained
in that set. (We call such a variable fresh because we haven’t used it yet.) If you
like, you can think of names more concretely as strings or numbers, but we won't
allow all of the usual operations on strings and numbers to be applied to names.

Now, the above definitions are a wordy way of describing an inductively-
defined grammar of abstract syntax trees. In the future, we will use a more concise
notation, called Bakus-Naur form. For example, in BNF form, we can provide a
concise definition of the grammars for types and terms as follows.

Definition 1.1.3 (STLC Syntax (concise form)).

numbers 0i,5,k € N

variables x e VvV

types T x= Nat|n — 7
terms e u= kx| Az.e|e e

Free variables Because types and terms are inductively defined sets, we can rea-
son about them using recursion and induction principles. The recursion principle
means that we define recursive functions that takes terms or types as arguments
and know that the functions are total, as long as we call the functions over smaller
subterms.

For example, one function that we might define calculates the set of free vari-
ables in a term.

Definition 1.1.4 (Free variables). We define the operation fv(e), which calculates
the set of variables that occur free in some term e, by structural recursion.

fv(k) =0 emptyset

fv(z) = {z} a singleton set
fv(ep e2) = fv(er) U fv(ex) union of sets
fv(Az.e) = fv(e) — {z} remove variable

Each of the lines above describes the behavior of this function on the different
sorts of terms. If the argument is a natural number constant £, then it contains no

1.1. SYNTAX 3

free variables, so the result of the function is the (). Otherwise, if the argument is
a single variable, then the function returns a singleton set. If the argument is an
application, then we use recursion to find the free variables of each subterm and
then combine these sets using an “union” operation. Finally, in the last line of this
function, we find the free variables of the body of an abstraction, but then remove
the argument = from that set because it does not appear free in entire abstraction.
Variables that appear in terms that are not free are called bound. For example,
in the term Az.z y, we have « bound and y free. Furthermore, some variables may
occur in both bound and free positions in terms; such as x in the term (\z.z y) z.

Renaming Here is another example of a recursively defined function. Sometimes
we would like to change the names of free variables in terms.

A renaming, &, is a mapping from variables to variables. A renaming has a
domain, dom ¢ and a range rng £. We use the notation y/z for a single renaming that
maps z to y, and the notation y/z, ¢ to extend an existing renaming with a new
replacement for x.

Definition 1.1.5 (Renaming application). We define the application of a renaming
to a term, written with postfix notation e(¢), as follows:

k(€) k

(§) =

(e1 €)(§) = (e(E)) (e(E))

(Az.e)(&) Ay.(e(y/z,&)) for y notin rgé

We can only apply a renaming to a term when its domain includes the free vari-
ables defined in the term. In that case, our renaming function is total: it produces
an answer for any such term.

We have to be a bit careful in the last line of this definition. What if £ already
maps the variable = to some other variable? What if £ already maps some other
variable to z? Our goal is to only rename free variables: the function should leave
the bound variables alone. Inside the body of Az.e, the variable z occurs bound,
not free. On the other hand, if we introduce a new z through renaming an existing
free variable, we do not want it to be captured by the function. For example, if we
rename z to y, in the function A\z.y{z/y), we do not want to produce Az.z.

Therefore, we pick some fresh variable y, and updating the renaming to (y/z, §)
in the recursive call. (If z is already fresh, we can keep using it.) That way, we
force the renaming that we use for the body of the abstraction to not change the
bounding structure of the term.

Substitution There is one final definition of a function defined by structural re-
cursion over terms: the application of a substitution that applies to all free variables
in the term.

A substitution, o is a mapping from variables to terms. As above, it has a domain
(a set of variables) and a range (this time a set of terms). We use the notation (e/z, o)
to refer to the substitution that maps variable z to term e, but otherwise acts like
g.

As before, this definition only applies when the free variables of the term are
contained within the domain of the substitution. Furthermore, when substituting
in the body of an abstraction, we must be careful to avoid variable capture.

4 CHAPTER 1. TYPE SAFETY FOR STLC

Definition 1.1.6 (Substitution application). We define the application of a substi-
tution function to a term, written with postfix notation e[o], as follows:

klo] = k

z[o] = oz

(e1 e2)lo] = (ei[o]) (e2[o])

(Az.e)[o] = Ay.(e[y/z,0]) wheny & fv(rngo)

Variable binding, alpha-equivalence and all that At this point, we will start to
be somewhat informal when it comes to bound variables in terms. As you see
above, we need to be careful about variable capture when doing renaming and
substitution. But we don’t want to pollute our reasoning later with these details.

Fortunately, we also don’t want to distinguish between terms that differ only
in their use of bound variables, such as Az.z and A\y.y. There is a relation called
a-equivalence that relates such terms, and from this point forward we will say that
our definitions are “up-to-a-equivalence”. What this means practically is that on
one hand, we must be sure that our definitions don’t really depend on the names
of bound variables. In return, we can always assume that any bound variable is
distinct from any other variable, if we need it to be. This practice is called the
“Barendregt Variable Convention”[Bar84].

But, note that this is an informal convention, allowing us to follow the common
practice of describing lambda calculus terms as we have done above (sometimes
called using a named or nominal representation of variables). But getting the de-
tails right is difficult (it requires maintaining careful invariants about all defini-
tions) and subtle. If you are working with a proof assistant, you really do need to
get the details right. In that context, it also makes sense to use an approach (such
as de Bruijn indices [de 72]) where the details are easier to get right. This is what
we will do in the accompanying mechanized proofs.

However, because using a named representation is standard practice, we will
continue to use that approach in these notes, glossing over details. This will al-
low us to stay roughly equivalent to the proof scripts (which have other details).
Because of the informal nature of our discussion, there will be minor omissions
related to variable naming; but we won't stress about them.

1.2 Type system

Next we will define a typing relation for STLC. This relation has the formI' - e € 7,
which is read as “in the typing context I, the term ¢ has type 7.” The typing context
I, tells us what the types of free variables should be. Therefore, we can view it as
a finite map from variables to types, and write it by listing all of the associations
z:7. If a term is in this relation we say that it “type checks”.

We define the typing relation inductively, using the following rules. A term
type checks if we can find some tree that puts these rules together in a derivation.
In each rule, the part below the line is the conclusion of the rule, and the rule may
have multiple premises. In a derivation tree, each premise must be satisfied by
subderivations, bottoming out with rules such as rule T-VAR or rule T-LIT that do
not have any premises for the same relation.

Definition 1.2.1 (STLC type system).

1.3. OPERATIONAL SEMANTICS 5

(in context I, term e has type T)

T-APP
T-VAR T-ABS 'Fepen—m
T-LIT z:7 €D Iz:mbeen I'Feemn
I'k € Nat I'Fzer I'EXzeern — 1 I'kee€em

In the variable rule, we look up the type of the variable in the typing context.
This variable must have a definition in I" for this rule to be used. If there is no type
associated with z, then we say that the variable is unbound and that the term fails
to scope-check.

In rule T-ABS, the rule for abstractions, we type check the body of the function
with a context that has been extended with a type for the bound variable. The type
of an abstraction is a function type 71 — 7o, that states the required type of the
parameter 7; and the result type of the body 5.

Rule T-APP, which checks the application of functions, requires that the argu-
ment to the function has the same type required by the function.

1.3 Operational Semantics

Is this type system meaningful? Our type system makes a distinction between
terms that type check (such as (Az.z) 3) and terms that do not, such as (2 5). But
how do we know that this distinction is useful? Do we have the right rules?

The key property that we want is called type safety. If a term type checks, we
should be able to evaluate it without triggering a certain class of errors.

One way to describe the evaluation of programs is through a small-step opera-
tional semantics. This is a mathematical definition of a relation between a program
e and its value. We build up a small step semantics in two parts. First, we define
a single step relation, written e ~ ¢/, to mean that a term reduces to e in one step.
Then we iterate this relation, called the multistep relation and written e ~* ¢/, to
talk about all of the different programs that e could reduce to after any number of
steps, including 0.

The multistep evaluations that we are interested in are the ones where we do
some number of small steps and get to an ¢’ that has a very specific form, a value.
If we have e ~+* v then we say that e evaluates to v.

Definition 1.3.1 (Value). A value is an expression that is either a natural number
constant or an abstraction.
viu=k|Az.e

We define the single step relation inductively, using the inference rules below
that state when one term steps to another.

Definition 1.3.2 (Small-step relation).

e~ e (term e steps to e')
S-BETA S-APP-CONG2 S-APP-CONG2
- eg ~ €h ey ~~ €h

(Az.e) v~ e[v/z] V ey~ U e v ey~ U e

6 CHAPTER 1. TYPE SAFETY FOR STLC

In each of these three rules, the part below the line says when the left term steps
to the right term. Rule STEP-BETA describe what happens when an abstraction is
applied to an argument. In this case, we substitute the argument for the parameter
in the body of the function. Note in this rule that the argument must be a value
before substitution. If it is not a value, then we cannot use this rule to take a step.
This rule is the key of a call-by-value semantics.

The second two rules each have premises that must be satisfied before they can
be used. Rule STEP-APP-CONGONE applies when the function part of an applica-
tion is not (yet) an abstraction. Similarly, the last rule applies when the argument
part of an application is not (yet) a value.

This small step relation is intended to be deterministic. Any term steps to at
most one new term.

Lemma 1.3.1 (Determinism). If e ~ e; and e ~ es then e; = e5.

The small step relation is not a function. For some terms e, there is no term e’
such that e ~» ¢’. For example, if we have a number in the function position, e.g.
(3 €), then the term does not step and these terms do not evaluate to any value.

This is important. These terms are called stuck and correspond to crashing pro-
grams. For example, if we tried to use a number as function pointer in the C lan-
guage, then we might get a segmentation fault.

1.4 Preservation and Progress

Type safety is a crucial property of a typed programming language. It ensures that
a well-typed program will never “go wrong” during execution. For the simply-
typed lambda calculus, this means a program will not get stuck in a state where it
cannot take a reduction step but is not a final value.

The type safety proof is usually defined through two lemmas: Preservation and
Progress.

Preservation The preservation lemma property states that if a term e has type 7,
and it takes a single reduction step to ¢’, then the new term must also have the
exact same type 7. In other words, the type is “preserved” through evaluation.

Lemma 1.4.1 (Preservation). If) - e € 7and e ~ ¢’ then) - ¢’ € 7.

We can prove this lemma in three separate ways: by structural induction on the
syntax of e, or by induction on the derivations of) - e € 7 or e ~~ ¢’. This flexibil-
ity is enabled by the simplicity of this type system. For example, we have exacltly
one typing rule for each syntactic form, and each typing rule has a corresponding
premise for each subterm.

Because this is our first inductive proof, we will first prove it by induction on
the syntax and then by induction on the step relation.

Proof. Proof is by induction on the syntax of e. We want to prove that the state-
ment of the lemma holds for any arbitrary e. Our induction principle requires
that we prove that it holds for the four different syntactic forms, natural numbers,
variables, applications and abstractions. In the latter two cases, we will be able to
assume that the lemma holds for each of the subterms of the form.

1.4. PRESERVATION AND PROGRESS 7

e If ¢ is a natural number k, then we want to show thatif) - k¥ € 7 and
k ~~ ¢ then 0 - ¢’ € 7. However, by looking at our operational semantics,
we see that constants don’t step, so there cannot be any such ¢’. So this case
is immediate.

e If ¢ is a variable z, then we want to show thatif ® - z € 7 and 7 ~ ¢’
then § - ¢ € 7. Again, this case is impossible, and for two reasons. We
cannot type check variables in an empty context and there is no rule of the
operational semantics that applies.

e If e is Az.e, then this case also impossible as abstractions don’t step.

e If ¢ is of the form e; ey, then we want to show thatif) - e; e; € 7 and
e1 ea ~ ¢ then) F ¢ € 7. In this case, we can look at the typing rules
to observe that there is only one way to type check an application. For this
application to type check, the derivation must also show that 0 - e; € 79 — 7
and () - e; € 7. (This reasoning principle is called inversion.) We can also
use inversion on the step relation. But this time there are three ways that an
application could step.

— The application could step using rule S-BETA. In this case, we know that
e1 is Az.e] and ey is some value v. Furthermore, we have that the result
of the application step ¢’ is ej[v/z]. Therefore, we need to show that the
result of this substitution has type 7. By inverting the typing judgement
for O + Az.ef € 19 — 7, we know that z: 72 F ¢’ € 7. At this point we,
we will appeal to a substitution lemma (see 1.4.1 below) to finish this case
of the proof.

— The application could step using rule S-APP-CONGONE. In this case, we
know that e; ~~ e] and that ¢’ is e] es. Because e; is a subterm of e; e,
we can assume that the preservation holds for that term. Therefore, we
know that () - e € 72 — 7. We then use this fact with rule T-APP to
conclude that @ - ef ey € 7.

— The application could step using rule S-APP-CONGTWO. In this case, we
know that e, is a value and that e; ~ €}. As above, we can assume that
the preservation holds for ey. Therefore, we know that) ¢} € 2. We
then use this fact with rule T-APP to conclude that) - e; e € 7.

O

For comparison, we also prove this theorem by induction on one of the deriva-
tions. The proof is not significantly different: the same pieces of the argument are
necessary. However, we put them together in a different way, replacing some uses
of inversion with the induction principle.

Proof. The proof is by induction on the derivation of e ~» ¢’. There are three cases,
one for each of the rules that could have been used to conclude e ~ ¢’.

¢ In the case of rule S-BETA, we have that e is of the form (Az.e¢) v and ¢’ is
e[v/z]. We also know that the first term type checks, i.e. that() - (Az.e) v € 7.
For this term to type check, we must have used rule T-APP, so by inversion,
we also know that 0 F (Az.e) € 1 — 7and 0 - v € 7. We can do this again,
because the only way to make an abstraction to type check is rule rule T-ABS,
so we must have also shown z: 7, | e € 7. At this point we, we will again

8 CHAPTER 1. TYPE SAFETY FOR STLC

appeal to the substitution lemma (see 1.4.1 below) to finish this case of the
proof.

¢ In the case of rule S-APP-CONGONE, we have the conclusion e; ez ~ ¢] e,
and premise e; ~ e]. For the first term to type check, we again must have
also used rule T-APP, so we know that) - e € 74 — 7and 0 F e € 7.
In this case we can use induction, because we know that e;, a term in the
subderivation both steps and type checks. So we know that) -] € 7. Now
we can use rule T-APP to conclude that @ F ef es € 7.

e This case is similar to the one above.

O

Substitution In the rule S-BETA case, our proof above relies on this lemma, that
we can write more formally:

Corollary 1.4.1 (Single Substitution). If z: 7 F e € mand 0 - v € 7 then 0 F
elv/z] €

However, to prove this lemma, we must first generalize it. We cannot prove the
lemma directly as stated, because we need a version that gives us a stronger induc-
tion hypothesis. To see where we run into trouble, let’s walk through a potential
proof and see where we get stuck.

We can try to prove this lemma by structural induction on e. That means that
we have four cases. The cases for variables, constants and applications go through
without difficulty. Now consider the case for abstractions. Say we have z : 7y
Ay.ep € 2. We want to show that) - (Ay.e1)[v/z] € T2. From the definition of
substitution, we know that this is equivalent to showing that () - Ay.e;[v/z] € 7,
implicitly using the variable convention to assume that y is not the same as x. By
inversion on the typing judgement, we also know that 72 is some function type
73 — 14 and that z : 7,y : 73 b e; € 74. From rule T-ABS, it suffices to show y :
71 F e1[v/z] € 4. However, this result is not available to us through induction: the
lemma only applies to terms that type check in a context with exactly one variable.
However, although e; is a subterm, it type checks in a context with two variables.
So we cannot make any more progress on this proof.

Therefore, we generalize the substitution lemma in two ways. First, we allow
the term to type check in any context I". Then, the lemma works for any substitu-
tion o that replaces every variable in domT, i.e. in scope, to a term of the appro-
priate type. However, the range of o need not be closed: we use A to describe the
types of variables that can appear in the range of o.

Lemma 1.4.2 (Simultaneous substitution). If I' - e € 7 and for all z € dom ", we
have Aoz el'z, then Al eo] € 7.

Proof. Proof is by structural induction on e. That means that we have four cases.
Again, the cases for variables, constants and applications go through without dif-
ficulty. Now consider the case for abstractions. Say we have I' - Ay.e; € 7. We
want to show that 0 - (Ay.e1)[o] € T2.

From the definition of substitution, we know that this is equivalent to showing
that 0 = A\y.(e1[y/y,0]) € 7o, implicitly using the variable convention to assume
that y is not in the domain of o or free in the range of . (The substitution (y/y, o)
is a map that is just like o, but maps the variable y to itself.) By inversion on the

1.5. WHAT IS TYPE SAFETY? 9

typing judgement, we also know that 7, is some function type 73 — 74 and that
I,y:73 F e € 14. From rule T-ABS, it suffices to show A, y: 73 b e1]y/y, 0] € 74.
This time we can use our inductive hypothesis on the typing derivation for e;.
However, to do so, we need to show that for all z in domT', y : 75, we have A, y:
3 (y/y,0)z € (T, y:73) z. But we know that A, y: 73 F y € 73 and we already
know that the rest of the substitution is well-typed. O

This is not the only way to strengthen our substitution lemma. If our typing
contexts are not ordered we can stick with single substitutions. Not ordered means
that we consider I', z : 7; to be the same context as z:7¢,T".

Lemma 1.4.3 (Substitution (Unordered context)). If ', z:7 - e€ rand '+ v € 74,
thenT - elv/z] € 7.

If contexts are ordered, then another way to strengthen this lemma is to let
the variable being substituted for appear anywhere in the middle of the context.
However, the proof of this version of the lemma requires an additional property
called weakening (shown below).

Lemma 1.4.4 (Substitution (Ordered context)). If ', z: 7, I"Feerand ' v € 7,
thenI, " F e[v/z] € 7.

Lemma 1.4.5 (Weakening). If ' - e € 7 then I, IV - ¢ € 7.

Weakening is a corollary of our strongest substitution lemma where we set A =
I',T” and o to be the identity function.

Progress The second lemma, called progress states that any well-typed term that
has not been completely reduced can always take at least one more reduction step.
It ensures that a well-typed term is not “stuck.” (i.e. is not a value but cannot step).

Lemma 1.4.6 (Progress). If §) - e € 7 then either e is a value or there exists an ¢’
such that e ~ €.

We prove this lemma by induction in the typing derivation. In the rules where
e is already a value, then the proof is trivial. Therefore we only need to consider
when e is an application of the form e; ey, where) - e; € 71 - 7and 0 F e; € 71.
By induction on the first premise, we know that either e; is a value or that it takes a
step to some ej. If it takes a step, the entire application takes a step by rule S-APP-
CONG1 and we are done. Otherwise, if it is a value, then we know that it must be
of the form A\z.e’, because it must have a function type. By induction on the second
premise, we know that either e, is a value or that it takes a step to some €. In the
former case, the application steps to e’[ex/z] by rule S-BETA, in the latter case, the
application steps to (Az.e’) e} by rule S-APP-CONG?2.

1.5 What is type safety?

We above claimed that type safety means that well-typed programs do not get
stuck. But what does this mean? Is that what we have really proven?

There are languages and type systems that do not satisfy both of these lemmas,
yet we still might like to say that they are type safe. Can we come up with a
more general definition? Something that is implied by preservation/progress but
doesn't itself require them to be true.

10 CHAPTER 1. TYPE SAFETY FOR STLC

Perhaps we would like to prove something like below, where the multistep
relation ~+* is iteration of the single-step relation any number of times. If a closed
term type checks then it must evaluate to a value with the same type.

Conjecture 1.5.1 (Terminating Type Safety). If § - e € 7 then there exists some
value v such that e ~»* vand 0 + v € 7.

This conjecture seems straightforward to prove from progress and preserva-
tion. By progress we know that either a term is a value or that it steps. By preser-
vation, we know that it if it steps, it has the same type. But what we are missing
from a straightforward proof is the fact that this conjecture says that evaluation
terminates. How do we know that we will eventually reach a value in some finite
number of steps?

It turns out that this conjecture is true, but we are not yet ready to prove it
directly. But even though the conjecture is true, it is not a good definition of type
safety: even though all well-typed STLC programs halt, that is not true of most
programming languages. And we would like to have a definition of type safety
that also applies to those languages. One that shows that well-typed programs do
not get stuck, while not requiring them to produce values.

There are several solutions to this issue.

Well-typed programs don’t get stuck The most straightforward approach is to
define what it means for a program to get stuck, and then show that this cannot
happen.

Definition 1.5.1 (Stuck). A term e is stuck if it is not a value and there does not
exists any e’ such that e ~~ ¢’.

Theorem 1.5.1 (Type safety (no stuck terms)). If @ - e € 7 then for all ¢/, such that
e ~* ¢/, ¢’ is not stuck.

Proof. We prove this by induction on the derivation of e ~~* ¢’. If there are no steps
in this reduction sequence, then e is equal to ¢’. By the progress lemma, we know
that e is not stuck. Otherwise, say that there is at least one step, i.e. there is some
e1 such that e ~~ ¢; and e; ~* ¢’. By preservation, we know that () - ¢; € 7. Then
we can use induction to say that e’ is not stuck. O

A coinductive definition What if we want to state type safety a little more pos-
itively. In other words, we want to say that a well typed term either produces a
value or runs forever, without having to talk about stuckness.

We can do that using the following coinductive definition.

Definition 1.5.2 (Runs safely). A program e runs safely, if it is a value or if e ~ ¢/,
and ¢’ runs safely.

This is exactly the definition we want to use in a type safety theorem.
Theorem 1.5.2 (Type Safety (runs safely)). If) - e € 7 then e runs safely.

Just as in an inductive definitions, the definition of “runs safely” refers to itself.
But we are interpreting this definition coinductively, so it includes both finite an
infinite runs. In other words, if a program steps to another program, which steps
to another program, and so on, infinitely, then it is included in this relation.

1.5. WHAT IS TYPE SAFETY? 11

Coinductive definitions come with coinduction principles. We usually use in-
duction principles to show that some property holds about an element of an in-
ductive definition that we already have. As we “consume” this definition, we can
assume, by induction, that the property is true for the subterms of the definition.
For example, when proving the preservation lemma, we assumed that the lemma
held for the subterms of the evaluation derivation.

The principle of coinduction applies when we want to “generate” an element
of a coinductive definition. Watch!

We will prove type safety through coinduction. Given a well typed term () -
e € 7, the progress lemma tells us that it is either a value or that it steps. If it is a
value, then we know directly that it runs safely. If it steps, i.e. if we have e ~~ ¢/,
then by preservation, we know that) - ¢’ € 7. By the principle of coinduction, we
know that e’ runs safely. So we can conclude that e runs safely.

When are we allowed to use a coinductive hypothesis? With induction, we
were limited to “consuming” subterms or smaller derivations. But when we use
a coinductive hypothesis, it cannot be the last step of the proof. We need to do
something with the result of this hypothesis to generate our coinductive definition.

This can be a bit confusing at first, and I encourage you to look at proofs com-
pleted with coinduction in the first place to get the hang of using this principle.

An inductive definition Alternatively, if you are still uncomfortable with coin-
duction, we can define what it means to run safely another way.

We say that an expression e steps to e’ in k steps using the following inductive
definition.

Definition 1.5.3. | ¢ ~* ¢’ (k steps)

MS-K-STEP
MS-K-REFL o ~ €1 el sk es
e WO (& €0 M-)S k €2

Definition 1.5.4 (Safe for k). An expression evaluates safely for k steps if it either
there is some ¢’, such that e ~* ¢/, or there is some number of steps j strictly less
than k£ where the term terminates with a value (i.e. there is some v and j <= k
such that e ~7 v).

We can now state type safety using this step-counting definition. We can'’t re-
ally talk about an infinite computation, but we can know that for an arbitrarily
long time, e will run safely during that time.

Theorem 1.5.3 (Type Safety (step-counting)). If) = e € 7 then for all natural
numbers k, e is safe for k.

We show this result by induction on k. If £ is 0, then the result is trivial. All
expressions run safely for zero steps. If k is nonzero, then progress states that e is
either a value or steps. If it is a value, we are also done, as values are safe for any
k. If it steps to some ¢/, then preservation tells us that) - ¢’ € 7. By induction, we
know that ¢’ is safe for k — 1. So either ¢’ ~7 v, i.e. ¢’ steps to some value v within
j steps, for some j < k — 1, or ¢/ ~*~1 ¢”. In the first case, we have e ~/*! v
which is a safe evaluation for e. In the second case, we have e ~* ¢”, which is also
a safe evaluation for e.

12 CHAPTER 1. TYPE SAFETY FOR STLC

1.6 Further reading

The type safety proof for the simply-typed lambda calculus is explained in a num-
ber of textbooks including TAPL [Pie02], PFPL [Har16] and Software Founda-
tions [PAAC™25]. Each of these sources defines type safety as the conjunction of
preservation and progress.

Milner [Mil78] proved a type soundness theorem, which states that well-typed
ML programs cannot “go wrong”. To do so, he constructed a denotational seman-
tics of the ML language that maps every ML program to either some mathematical
value (like a number or continuous function), to a special element indicating diver-
gence (L), or to a special element called “wrong” that indicates a run-time error.
He then proved that if a program type checks, then its denotation does not include
the “wrong” element.

Wright and Felleisen [WF94] observed that run-time errors could be ruled out
by using a small-step operational semantics. They defined syntactic type sound-
ness as showing preservation (inspired by subject reduction from combinatory
logic), characterizing “stuck” or “faulty” expressions, and then showing that faulty
expressions are not typeable (i.e. progress). They put these together with a strong
soundness theorem that says that well-typed programs either diverge or reduce to
values of the appropriate type.

2

Natural number recursion

STLC is rather simple. It lacks the computational power of most typed program-
ming languages. All STLC expressions terminate! In due time, we will extend this
language with arbitrary recursive definitions, which make the language Turing
complete.

However, before we do that let’s extend this system with a limited form of
recursion. Our definition of STLC includes the natural numbers as constants, i.e.
numbers starting from zero. Natural numbers can be defined using an inductive
datatype. Any natural number is either zero or the successor of some natural num-
ber.

Let’s redefine the syntax of natural numbers to make this structure explicit.

keN=:=0|Sk

Now, instead of saying 1, or 2, or 3, we could say S0, or S(S0), or S(S(S0)).
Isn’t that better? Ok, perhaps maybe not. We will keep the syntax 1, 2, 3 around
for clarity, but remember that these arabic numerals stand for the unary structure.

The advantage of working with the inductive structure of natural numbers is
that they now come with an induction principle (for reasoning mathematically)
and a recursion principle (for creating new definitions). This is the justification
that we used in the previous section for the step-counting definition of type safety.

Now that we have observed the inductive structure of natural numbers, let’s
add a primitive recursion operator to STLC that can be used to define programs, in
that language, by recursion. This form of recursion will always be bounded; we
will be able to write more interesting computations but will still be able to know
that all experssions terminate.

In fact, we will add fwo new expression forms in this section, as shown in the
grammar below.

e=...|succe|nreceof {0 =ey; Sz = ¢}

Along with these new expression forms, we also add the typing and small-step
semantics rules shown in Figure 2.1.

13

14 CHAPTER 2. NATURAL NUMBER RECURSION

(in context I, term e has type T)

T-NREC
I' e € Nat
T-sUCC F'Feer
I'+ e € Nat I'Nz:Natte; €7 — 7

I' F succe € Nat I'Fnreceof {0 = ey; Sz = e1} €7

e~ e (term e steps to e')
LIT S-SUCC-CONG NREC-ZER

S-SUCC- €~ 6/ S- C- (0]

succk ~ Sk succ e ~» succ e’ nrecO0of {0 = ¢1; Sz = e} ~ ¢

S-NREC-SUCC

nrec (Sk)of {0 = e1; Sz = e2} ~ (e2k/z]) (nreckof {0 = e;; Sz = e3})

S-NREC-CONG
e~ e

nreceof {0 = e1; Sz = e3} ~ nrece’ of {0 = ¢e1; Sz = e}

Figure 2.1: Natural number operations: successor and recursion

The successor operation succ e, adds one to its argument. This operation is
specified by the two rules of the operational syntax that trigger when the argument
is a literal value (rule S-SUCC-LIT) and when the argument itself steps (rule s-succ-
CONG). The typing rule (rule T-SUCC) requires the argument to have type Nat and
asserts that its successor is also a natural number. (Note: don’t confuse the suc-
cessor operation succ e of the expression language, with the syntax S & of natural
numbers. The former is never a value (it steps by one of the two rules) while the
latter is a way of writing a natural number).

The (primitive) recursion operation nrec e of {0 = ey; S 2 = e; } recurses over
e. This operation compares e to see of it is 0 or some larger number. In the first
case, the expression steps to ¢g. If the argument is equal to S & for some &, then the
expression steps to e; where k replaces z. But that is not all! The rule also applies
the result of this substitution to the recursive execution of the loop on k.

For example, we can define a doubling function on natural numbers with the
following definition.

double z = nrec z of {0 = 0; Sy = Az.succ (succ z)}

2.1. FURTHER READING 15

Here’s how this doubling function might evaluate when given the number 2:

double 2 = nrec2of {0 = 0; Sy = Az.succ (succz)}
~ (Az.succ (succ z))
(nreclof {0 = 0; Sy = Az.(succ (succz))})
~ (Az.succ (succ z)
((Az.(succ (suc
~ (Az.succ (succ z)
~ (Az.succ (succ z)
~ (Az.succ (succ z)
~ (Az.succ (succ z)
~ succ (succ 2)
~ succ 3
~ 4

z))) (nrec0of {0 = 0; Sy = Az.(succ (succz))}))
((Az.(succ (succ z))) 0)
(succ (succ0))

(succl)

)
)
)
)
)2

Because the successor case is applied to the recursive execution of the loop, the
typing rule requires that it have a function type.

Why do we specify the operation in this way? Sometimes you may see a se-
mantics for primitive recursion that directly substitutes the result of the recursive
execution in the successor case instead of indirectly doing so via application. The
reason is that we want a call-by-value semantics for iteration. The rules should fully
evaluate the recursive call on the predecessor before evaluating e;. Because our
operational semantics for application is already call-by-value, we get this behavior
automatically.

Note that the way that we have defined this natural number recursor through
pattern matching makes it particularly simple to define a predecessor function:

pred z =nreczof {0 =0; Sy = y}

This is not the case for all recursion principles. A more restricted form, some-
times called iteration does not bind y in the successor case.

These new extensions satisfy the properties of substitution, progress, and preser-
vation that we saw in the previous chapter. As an exercise, you might try to extend
those proofs with appropriate new cases.

2.1 Further Reading

This chapter is adapted from Chapter 9 of Harper [Har16], with the recursor mod-
ified to for our call-by-value semantics. Harper calls this language to Godel’s
System T [G58], designed to study the consistency of arithmetic. The terminol-
ogy that we use for “primitive recursion” is not quite the same as the related
concept of the same name from computability theory. In that context, the nat-
ural number recursor is restricted to produce functions with types of the form
Nat — Nat — ... — Nat, i.e. functions that take any number of naturals as argu-
ments and return a natural number. This operator does not have that restriction,
and can define functions that are not usually considered “primitive recursive”.

In general, primitive recursion is not just for natural numbers. Any inductive
type, such as lists or trees, can be equipped with its own primitive recursion oper-
ation (see Mendler’s dissertation [?]).

16

CHAPTER 2. NATURAL NUMBER RECURSION

Big-Step Operational
Semantics

So far, we have only considered small-step operational semantics for STLC. This
semantics is useful because it provides a substitution-based, step-by-step explana-
tion of how each expression evaluates.

But, as we have seen, our operational semantics is deterministic! Why didn’t
we express the semantics using an interpreter instead.

Consider the following definition in the Roq programming language. We rep-
resent the syntax of the language using the Tm datatype and the interpreter using
the eval function.

Inductive Tm : Type :=

var : Var -> Tm (x variable, with names of type Var x)

| abs : Var -> Tm -> Tm (» abstraction «)

| app : Tm -> Tm -> Tm (+ application)

| 1it : nat -> Tm. (» literal natural number constant =)
Fixpoint eval (e : Tm) : option Tm :=

match e with

| var x => None

| 1it k => Some (lit k)

| abs x el => Some (abs x el)

|

app el ez =>
match eval el , eval e2 with
| Some (abs x el') , Some v2 => eval (el' [v2 / x])
| _ , _ => None
end
end.

The interpreter is partial because we may try to evaluate an expression with a
free variable, or because we may have a type error. In either case, the interpreter
returns None. Otherwise, when evaluating an application, the interpreter evalu-
ates the function to some abstraction value, the argument to some other value and
then calls itself recursively after substituting the argument for the parameter.

17

18 CHAPTER 3. BIG-STEP SEMANTICS

But this definition is not accepted by Rocq. It rejects the definition of eval with
the following error message:

Recursive call to eval has principal argument equal to
"el’ [v2/x]" instead of one of the following variables:
"elll "62".

The reason for this error is that Rocq assumes that we are defining this evaluation
function via structural recursion on expressions. That means that we are allowed to
call eval on any subterm of the argument (such as el and e2, the subterms in the
application case). However, the third recursive call is not to a subterm—instead it
is to the body of the closure. Rocq cannot determine that this function terminates,
so it must reject this definition.

3.1 Big-step semantics

To work around this issue in our metalogic, we can work with a relational version of
eval instead. We define the inductive relation e = v that holds when e evaluates
v.

Definition 3.1.1 (Big-step semantics).

e=>v (term e big-steps to v)

BS-APP
e1 = A\z.¢€) e = U

BS-VAL er[vi/z] = vy

v =0 €1 €2 = Uy

Notably, this definition requires only two rules! The first rule states that values
evaluate to themselves. The second evaluates an application and holds when the
function evaluates to an abstraction, the argument evaluates to a value and the
substitution of the argument the parameter also evaluates to a value.

Theorem 3.1.1. Equivalence of semantics] For closed expressions e, we have e ~*
v if and only if e = w.

We prove each direction of this lemma separately. For the forward direction
(small-step implies big-step), we need to show the following lemma:

Lemma 3.1.1. If ¢ ~ ¢’ then for forall v, if ¢’ = v then e = v.

For the backwards direction (big-step implies small-step), we need to define
multi-step analogues of the two evaluation rules of the big-step semantics.

Lemma 3.1.2 (s_val). v ~* v

Lemma 3.1.3 (s_app). If e ~* Az.ef and e; ~* v and ef[vi/z] ~»* vy then
€1 €2 s V2.

This lemma itself relies on showing multi-step analogues of the single-step con-
gruence rules for the small step semantics.

Lemma 3.1.4 (ms_app_congl). If e; ~* ¢f then e ez ~* €] ea.

Lemma 3.1.5 (ms_app_cong?2). If e; ~* €} then v eg ~* vy €5.

3.2. BIG-STEP SEMANTICS AND TYPE SAFETY? 19

3.2 Big-step semantics and type safety?

The big-step semantics has fewer rules, and in some situations, may be easier to
understand as it is more directly connected to an interpreter.

However, there is a significant drawback of a big-step semantics: it handles
both the partiality of a runtime type error and the potential partiality of divergence
in exactly the same way.

But, we run into difficulty when stating and proving type safety for this seman-
tics. While preservation holds for this semantics:

Lemma 3.2.1 (Preservation). If e = vand) e € 7 thenl - v € 7.

There is no way to define an analogue for the progress lemma for the big step
semantics.
It is tempting to define type safety as follows:

Conjecture 3.2.1 (Big Step Safety). If 0 - e € Tthene = vand 0 F v € 7.

But this is a strong lemma — it rules out both forms of partiality. We know that
the program doesn’t crash, but we also know that the program doesn’t diverge
either. While this lemma is true for STLC, proving this lemma is not a straightfor-
ward induction. And, if we were to extend the language to include nontermina-
tion, it would no longer be true.

20

CHAPTER 3. BIG-STEP SEMANTICS

Bibliography

[Bar84]

[de 72]

[G58]

[Har16]

[Mil78]

[PAAC+25]

[Pie02]
[WF94]

Hendrik Pieter Barendregt. The Lambda Calculus: Its Syntax and Seman-
tics. Sole distributors for the U.S.A. and Canada, Elsevier Science Pub.
Co., New York, N.Y., 1984.

N.G de Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application
to the church-rosser theorem. Indagationes Mathematicae (Proceedings),
75(5):381-392, 1972.

Kurt Godel. Uber eine bisher noch nicht beniitzte erweiterung des
finiten standpunktes. Dialectica, 12(3):280, 1958.

Robert Harper. Practical Foundations for Programming Languages. Cam-
bridge University Press, USA, 2nd edition, 2016.

Robin Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17(3):348-375, 1978.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjoberg,
Andrew Tolmach, and Brent Yorgey. Programming Language Founda-
tions, volume 2 of Software Foundations. Electronic textbook, 2025. Ver-
sion 6.7, http://softwarefoundations.cis.upenn.edu.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

A K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38-94, 1994.

21

http://softwarefoundations.cis.upenn.edu

	1 Type Safety for STLC
	1.1 Syntax
	1.2 Type system
	1.3 Operational Semantics
	1.4 Preservation and Progress
	1.5 What is type safety?
	1.6 Further reading

	2 Natural number recursion
	2.1 Further Reading

	3 Big-step semantics
	3.1 Big-step semantics
	3.2 Big-step semantics and type safety?

